

СОДЕРЖАНИЕ

1. Исходные данные	4
2. Характеристики материалов	4
3. Расчет внешних воздействий на фасадную систему для прямоугольного в плане здания	
высотой 75м	4
3.1 Нагрузки, действующие на фасадную систему в 5 ветровом и 3 гололедном	
районах, тип местности «В», в зимний период (рядовая зона №1)	5
3.2 Нагрузки, действующие на фасадную систему в 5 ветровом и 3 гололедном районах, тип	
местности «В», в летний период (рядовая зона №1)	7
3.3 Нагрузки, действующие на фасадную систему в 5 ветровом и 3 гололедном	
районах, тип местности «В» (краевая зона №2)	8
4. Расчет несущей конструкции	9
4.1 Расчет направляющей	9
4.1.1 Для прямоугольного в плане здания высотой 75м, расположенного в 1 ветровом	
и 2 гололедном районах в рядовой зоне №1. Зимний период. Расчетная схема №1	9
4.1.2 Для прямоугольного в плане здания высотой 75м, расположенного в 1 ветровом	
и 2 гололедном районах в рядовой зоне №1.Летний период. Расчетная схема №1	11
4.1.3 Для прямоугольного в плане здания высотой 75м, расположенного в 1 ветровом	
и 2 гололедном районах в угловой зоне №2. Расчетная схема №1	11
4.1.4 Для прямоугольного в плане здания высотой 75м, расположенного в 5 ветровом	
районе. Рядовая зона №1. Летний период. Расчетная схема №2	12
4.1.5 Для прямоугольного в плане здания высотой 75м, расположенного в 5 ветровом	
районе. Угловая зона №2. Расчетная схема №2	14
4.1.6 Проверка прогиба в пролетах направляющей для условий по п.4.1.5	14
4.2 Расчет соединений направляющей с несущим и	
опорным кронштейнами	15
4.2.1 Расчет соединений направляющей с несущим кронштейном для	
1 ветрового района	15
4.2.2 Расчет соединений направляющей с опорным кронштейном для	
1 ветрового района	20
4.2.3 Расчет соединений направляющей с несущим кронштейном для	
5 ветрового района	21
4.2.4 Расчет соединений направляющей с опорным кронштейном для	
5 ветрового района	23
4.3 Расчет удлинителей несущего кронштейна	24
4.4 Проверка на устойчивость выступающей части флажка	26
4.5 Расчет на прочность несущего кронштейна	26
4.6 Расчет на прочность опорного кронштейна	28
4.7 Расчет на прочность вкладыша опорного кронштейна	29
5. Расчет несущей конструкции для расчетной схемы №4	30

5.1 Расчет соединения удлинителей флажков с направляющей	30
5.2 Расчет соединения удлинителей флажков с флажком	34
5.3 Расчет удлинителей флажков	34
5.4 Расчет флажков	35
5.5 Расчет опорного кронштейна в качестве несущего	36
6. Выводы	38
7. Перечень нормативных документов	39
8. Таблицы №1и№2	
9. Характеристики поперечных сечений профилей	

1. ИСХОДНЫЕ ДАННЫЕ

Фасадная облицовка – керамогранитные плиты.

2. ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ

Керамогранитные плиты.

Максимальная толщина плиты – 12мм.

Плотность материала – 2500 кг/м³.

Максимальные габаритные размеры плиты – 600 x 1200мм.

Нормативная вертикальная нагрузка от веса 1м² плит:

•
$$q_z^n = p \times V = 2500 \times 0.012 = 30.0 \kappa z / M^2 (294.0 H / M^2)$$

Расчетная вертикальная нагрузка от веса 1м² плит:

•
$$q_z = \gamma_f \times q_z^n = 1.2 \times 294.0 = 352.8 H / M^2$$

 $\gamma_f = 1,2$ – коэффициент надежности по нагрузкам.

Несущая конструкция.

Элементы несущей конструкции имеют следующие расчетные сопротивления и коэффициенты условий работы:

• На растяжение, сжатие и изгиб: $R = 120M\Pi a; \gamma_c = 1;$

• На сдвиг: $R_s = 75 M\Pi a; \gamma_c = 1;$

• На смятие: $R_{lp} = 90 M\Pi a; \gamma_c = 1;$

 $R_{p} = 190M\Pi a; \gamma_{c} = 1;$

3. РАСЧЕТ ВНЕШНИХ ВОЗДЕЙСТВИЙ НА ФАСАДНУЮ СИСТЕМУ ДЛЯ ПРЯМОУГОЛЬНОГО В ПЛАНЕ ЗДАНИЯ ВЫСОТОЙ 75м

Расчет действующих нагрузок производится для зимнего и летнего периодов. Для зимнего периода доминирующими нагрузками будут являться гололедные и нагрузки от веса облицовки и самой несущей конструкции. При учете гололедных нагрузок, ветровые берутся в размере 25% от расчетных значений.

Для летнего периода полностью учитываются ветровые, и нагрузки от веса облицовки и несущей конструкции.

Расчет производится для I и II зон прямоугольного в плане здания высотой 75м. (рис.

- 1), расположенного:
- а) в пятом ветровом и третьем гололедном районах, тип местности «В»;
- б) в первом ветровом и втором гололедном районах, тип местности «В» (г. Москва);

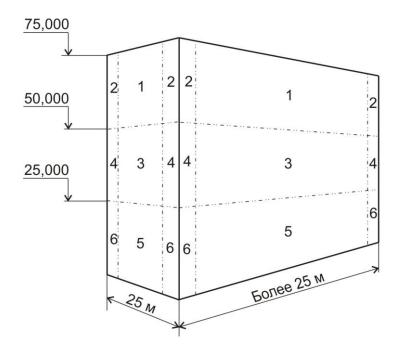


Рис. 1 Схема расположения зон на фасаде здания.

3.1 Нагрузки, действующие на фасадную систему в пятом ветровом и третьем гололедном районах, тип местности «В» в зимний период.

Рядовая зона №1.

3.1.1 Горизонтальная нагрузка от ветрового давления рассчитывается по формуле 4.7 (1) с учетом средней и пульсационной составляющих ветровой нагрузки. Нормативное значение ветрового давления принимается для пятого ветрового района и равно:

•
$$W_0 = 0,60 K\Pi a$$

Коэффициент, учитывающий изменение суммарной (средней и пульсационной составляющих) ветровой нагрузки по эквивалентной высоте $Z_{_{\it e}}$, принимается для $Z_{_{\it e}}$ = 75м, типа местности «В» и равен:

$$\bullet \qquad K_g(Z_e) = 2,49$$

Аэродинамический коэффициент принят для рядовой зоны здания и равен:

•
$$C = -1,1$$

Коэффициент корреляции ветровой нагрузки определяется по табл. 4.1. (1) и равен:

•
$$v = 1, 0$$

Нормативная ветровая нагрузка для рядовой зоны с учетом гололеда:

•
$$Q_y^n = 0.25 \times W_0 \times K_g(Z_e) \times C \times v = 0.25 \times 0.60 \times 2.49 \times 1.1 \times 1.0 = 0.410 \text{ KHa}$$

Расчетная ветровая нагрузка при коэффициенте надежности по нагрузке:

$$q_y = Q_y^n \times \gamma_f = 410,0 \times 1,4 = 574,0 H / M^2(\Pi a)$$

Нормативная горизонтальная нагрузка на вертикальную направляющую:

•
$$q_{v1}^n = Q_v^n \times H \times K_{HeD} = 410,0 \times 0,6 \times 1,25 = 307,5 H/M$$

Н– шаг крепления вертикальных направляющих по горизонтали;

Кнер.- коэффициент неразрезности для двухпролетной схемы (плита облицовки длиной 1200мм).

Расчетная горизонтальная нагрузка на вертикальную направляющую:

•
$$q_{v1} = q_v \times H \times K_{nep} = 574, 0 \times 0, 6 \times 1, 25 = 344, 4H / M$$

3.1.2 Вертикальная расчетная нагрузка от двустороннего обледенения плит облицовки для III гололедного района, для высоты 75м:

Вертикальная гололедная нагрузка рассчитывается по формуле 14 (2)

•
$$i = b \times K \times \mu_2 \times \rho \times g(\Pi a)$$

b = 10мм – толщина наледи (таблица 11) (2)

K - коэффициент, учитывающий высоту расположения конструкций (таблица 13) (2)

 μ_2 - коэффициент, учитывающий форму обледенения.

 ρ = 900 кг/м³ – плотность льда.

 $g = 9.8 \text{ м/c}^2 - \text{ускорение свободного падения.}$

Нормативное значение поверхностной гололедной нагрузки:

•
$$i_z^n = 0.010 \times 1.84 \times 0.6 \times 900 \times 9.8 = 97.4(\Pi a)$$

Расчетное значение поверхностной гололедной нагрузки:

•
$$i_z = i_z^n \times \gamma = 97, 4 \times 1, 3 = 126, 6(\Pi a)$$

 $\gamma = 1,3$ — коэффициент надежности по гололедной нагрузке.

Нормативное значение поверхностной гололедной нагрузки на вертикальную направляющую:

•
$$i_{z_1}^n = i_{z_2}^n \times H = 97,4 \times 0,6 = 58,4 H / M$$

Расчетное значение поверхностной гололедной нагрузки на вертикальную направляющую:

•
$$i_{z1} = i_z \times H = 126, 6 \times 0, 6 = 76, 0H / M$$

3.1.3 Вертикальная нагрузка от веса плит:

Нормативная вертикальная нагрузка от веса плит на вертикальную направляющую:

•
$$q_{z_1}^n = q_z^n \times H = 294, 0 \times 0, 6 = 176, 4H / M$$

Расчетная вертикальная нагрузка от веса плит на вертикальную направляющую:

•
$$q_{z1} = q_z \times H = 352, 8 \times 0, 6 = 211, 7H / M$$

3.2 Нагрузки, действующие на фасадную систему в пятом ветровом и третьем гололедном районах, тип местности «В» в летний период.

Рядовая зона №1.

3.2.1 Горизонтальная нагрузка от ветрового давления.

Нормативное значение ветрового давления принимается для пятого ветрового района и равно:

•
$$W_0 = 0,60 K\Pi a$$

Коэффициент, учитывающий изменение суммарной (средней и пульсационной составляющих) ветровой нагрузки по эквивалентной высоте $Z_{\scriptscriptstyle e}$, принимается для $Z_{\scriptscriptstyle e}$ = 75м, типа местности «В» и равен:

$$\bullet K_{g}(Z_{e}) = 2,49$$

Аэродинамический коэффициент принят для рядовой зоны здания и равен:

•
$$C = -1,1$$

Коэффициент корреляции ветровой нагрузки:

•
$$v = 1,0$$

Нормативная ветровая нагрузка для рядовой зоны:

•
$$Q_v^n = W_0 \times K \times C \times v = 0,60 \times 2,49 \times 1,1 \times 1,0 = 1,643(K\Pi a)$$

Расчетная ветровая нагрузка при коэффициенте надежности по нагрузке:

•
$$\gamma_f = 1,4$$

•
$$q_v = Q_v^n \times \gamma_f = 1643,0 \times 1,4 = 2300,0 H / M^2 (\Pi a)$$

Нормативная горизонтальная нагрузка на вертикальную направляющую:

•
$$q_{y1}^n = Q_y^n \times H \times K_{nep} = 1643, 0 \times 0, 6 \times 1, 25 = 1232, 3H / M$$

Н– шаг крепления вертикальных направляющих по горизонтали;

Кнер.- коэффициент неразрезности для двухпролетной схемы (плита облицовки длиной 1200мм).

Расчетная горизонтальная нагрузка на вертикальную направляющую:

•
$$q_{v1} = q_v \times H \times K_{uep} = 2300, 0 \times 0, 6 \times 1, 25 = 1725, 0H / M$$

3.2.2 Вертикальная нагрузка от веса плит:

Нормативная вертикальная нагрузка от веса плит на вертикальную направляющую:

•
$$q_{z1}^{n} = 176,4H/M$$

Расчетная вертикальная нагрузка от веса плит на вертикальную направляющую:

•
$$q_{z1} = 211,7H/M$$

3.3 Нагрузки, действующие на фасадную систему в пятом ветровом и третьем гололедном районах, тип местности «В», в краевой зоне №2.

Для этой зоны доминирующими нагрузками будут являться ветровые нагрузки и нагрузки от веса облицовки и самой несущей конструкции. На фрагментах фасада с повышенным ветровым воздействием (краевые зоны) наледь не образуется и гололедной нагрузкой на этих участках можно пренебречь.

Горизонтальная нагрузка от ветрового давления.

Нормативное значение ветрового давления принимается для пятого ветрового района и равно:

•
$$W_0 = 0,60 K\Pi a$$

Коэффициент, учитывающий изменение суммарной (средней и пульсационной составляющих) ветровой нагрузки по эквивалентной высоте Z_z :

•
$$K_{\sigma}(Z_{\rho}) = 2,49$$

Аэродинамический коэффициент принят для краевой зоны здания и равен:

•
$$C = -2.0$$

Коэффициент корреляции ветровой нагрузки:

•
$$v = 1.0$$

Нормативная ветровая нагрузка для краевой зоны:

•
$$Q_v^n = W_0 \times K_g(Z_e) \times C \times v = 0,60 \times 2,49 \times 2,0 \times 1,0 = 2,988 K\Pi a$$

Расчетная ветровая нагрузка при коэффициенте надежности по нагрузке:

•
$$\gamma_f = 1,4$$

•
$$q_y = Q_y^n \times \gamma_f = 2988, 0 \times 1, 4 = 4183, 2H / M^2(\Pi a)$$

Нормативная горизонтальная нагрузка на вертикальную направляющую:

•
$$q_{y1}^n = Q_y^n \times H \times K_{nep} = 2988, 0 \times 0, 6 \times 1, 25 = 2241, 0H / M$$

Н– шаг крепления вертикальных направляющих по горизонтали;

Кнер.- коэффициент неразрезности для двухпролетной схемы (плита облицовки длиной 1200мм).

Расчетная горизонтальная нагрузка на вертикальную направляющую:

•
$$q_{y1} = q_y \times H \times K_{nep} = 4183, 2 \times 0, 6 \times 1, 25 = 3137, 4H / M$$

Результаты расчетов по зонам №1, 2 сведены в таблицу №1.

Ввиду полной аналогии расчета нагрузок для первого ветрового и второго гололедного районов, тип местности «В» (г. Москва) сам расчет не приводится, все данные по расчету сведены в таблицу №2.

4. РАСЧЕТ НЕСУЩЕЙ КОНСТРУКЦИИ

Область применения системы — здания и сооружения высотой 75м, расположенные в ветровых районах до пятого и гололедных районах до третьего включительно при следующих параметрах системы:

- использование максимальных размеров плит (600 × 1200×12мм);
- шаг направляющих в угловых зонах здания 600мм;
- максимальный относ облицовки от стены 260мм.

Расчет производится для двух ветровых районов, определяющих область применения фасадной системы – для первого и пятого ветровых районов по СНиП 2.01.07-85*.

4.1 Расчет направляющей

4.1.1 Для прямоугольного в плане здания высотой 75м, расположенного в первом ветровом и втором гололедном районах (г. Москва). Рядовая зона №1. Зимний период. Расчетная схема №1.

Исходные данные:

Несущий кронштейн высотой 120мм, закреплен на направляющей сверху; к стене крепится двумя КИ.

Шаг кронштейнов (направляющих) по горизонтали – 600мм;

Шаг кронштейнов по вертикали – 1350мм;

Длина направляющей – 3000мм;

Расстояние от основания до плит облицовки – 260мм;

Расчетная схема направляющей – неразрезная балка на трех опорах. Верхняя опора №1 – шарнирно - неподвижная; средняя №2 и нижняя №3 – шарнирно - подвижные опоры (рис.2).

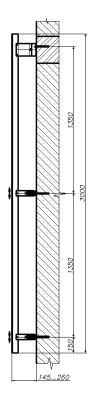


Рис.2. Расчетная схема №1

Геометрические характеристики поперечного сечения направляющей:

- $\delta = 2.0 \text{ MM};$
- t = 3.0 MM;
- $A = 296 \text{ mm}^2$;
- $Jx = 118457,3 \text{ MM}^4$;
- $Wx = 2696,4 \text{ MM}^3$;

На вертикальную направляющую действуют нагрузки, создаваемые и передаваемые закрепленными на ней фасадными плитами: нагрузки от веса плит, гололедные и ветровые.

Допущение: нагрузки, передаваемые фасадными плитами на вертикальные направляющие считаем распределенными.

Внутренние силовые факторы, действующие в поперечном сечении направляющей:

Изгибающий момент от вертикальной распределенной нагрузки:

$$M_{g} = 0.5 \times (q_{z1} + i_{z1}) \times L_{z} \times e_{yc}$$

Где: $L_z = 1,35 M$ – пролет вертикальной направляющей;

 $e_{yc} = 23,6$ мм – расстояние между координатами центров масс плитки и направляющей;

•
$$M_{e} = 0.5 \times (211.7 + 38.0) \times 1.35 \times 0.024 = 4.1 HM$$

Изгибающий момент от горизонтальной распределенной нагрузки:

•
$$M_{2} = 0.125 \times q_{y1} \times L_{z}^{2}$$

•
$$M_{2} = 0.125 \times 165.9 \times 1.35^{2} = 37.8 Hm$$

Продольное усилие от вертикальной распределенной нагрузки, создаваемое весом плит и гололедом:

•
$$N_z = (211,7+38,0) \times 3,0 = 749,1H$$

Расчет вертикальной направляющей по нормальным напряжениям, возникающим от действия изгибающих моментов и продольного усилия, производится по формуле 50 (2):

•
$$\left(\frac{N_z}{A_n} + \frac{M_s + M_z}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

 N_z - продольное усилие;

 A_n - площадь поперечного сечения направляющей;

 $M_{\scriptscriptstyle g}$ и $M_{\scriptscriptstyle g}$ - изгибающие моменты от вертикальных и горизонтальных нагрузок;

 W_{n} - максимальный момент сопротивления сечения;

 γ_{n} - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{749,1}{296,0} + \frac{(4,1+37,8)\times10^3}{2696,4}\right) \times 0,95 = 17,2M\Pi a < 120\times1,0 = 120M\Pi a$$

Прочность направляющей по нормальным напряжениям обеспечивается.

4.1.2 Для прямоугольного в плане здания высотой 75м, расположенного в первом ветровом и втором гололедном районах (г. Москва). Рядовая зона №1. Летний период. Расчетная схема №1.

Исходные данные: те же.

Внутренние силовые факторы, действующие в поперечном сечении направляющей:

Изгибающий момент от вертикальной распределенной нагрузки:

$$M_{e} = 0.5 \times q_{z1} \times L_{z} \times e_{vc}$$

Где: $L_z = 1,35 M$ – пролет вертикальной направляющей;

 $e_{yc} = 23,6_{MM}$ – расстояние между координатами центров масс плитки и направляющей;

$$M_a = 0.5 \times 211, 7 \times 1.35 \times 0.024 = 3.4 Hm$$

Изгибающий момент от горизонтальной распределенной нагрузки:

$$\bullet \qquad M_z = 0.125 \times q_{v1} \times L_z^2$$

•
$$M_1 = 0.125 \times 661.5 \times 1.35^2 = 150.7 Hm$$

Продольное усилие от вертикальной распределенной нагрузки, создаваемое весом плит:

•
$$N_z = q_{z1} \times L$$

•
$$N_z = 211,7 \times 3,0 = 635,1H$$

Расчет вертикальной направляющей по нормальным напряжениям, возникающим от действия изгибающих моментов и продольного усилия, производится по формуле 50 (2):

$$\bullet \qquad \left(\frac{N_z}{A_n} + \frac{M_s + M_z}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

 N_z - продольное усилие;

 $A_{\scriptscriptstyle n}$ - площадь поперечного сечения направляющей;

 $M_{_{\it g}}$ и $M_{_{\it g}}$ - изгибающие моменты от вертикальных и горизонтальных нагрузок;

 W_{n} - максимальный момент сопротивления сечения;

 $\gamma_{\text{\tiny{n}}}$ - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{635,1}{296,0} + \frac{(3,4+150,7)\times10^3}{2696,4}\right) \times 0,95 = 56,28M\Pi a < 120\times1,0 = 120M\Pi a$$

Прочность направляющей по нормальным напряжениям обеспечивается.

4.1.3 Для прямоугольного в плане здания высотой 75м, расположенного в первом ветровом и втором гололедном районах (г. Москва). Угловая зона №2. Расчетная схема №1.

Исходные данные: те же.

Внутренние силовые факторы, действующие в поперечном сечении направляющей:

Изгибающий момент от вертикальной распределенной нагрузки:

$$M_{_{6}} = 0,5 \times q_{z1} \times L_{z} \times e_{_{VC}}$$

Где: $L_z = 1,35 M$ – пролет вертикальной направляющей;

 $e_{yc}=23,6_{MM}$ – расстояние между координатами центров масс плитки и направляющей;

•
$$M_{e} = 0.5 \times 211, 7 \times 1, 35 \times 0, 024 = 3, 4H_{M}$$

Изгибающий момент от горизонтальной распределенной нагрузки:

$$M_z = 0.125 \times q_{v1} \times L_z^2$$

•
$$M_{2} = 0.125 \times 1202, 3 \times 1.35^{2} = 273.9 Hm$$

Продольное усилие от вертикальной распределенной нагрузки, создаваемое весом плит:

•
$$N_z = q_{z1} \times L$$

•
$$N_z = 211,7 \times 3,0 = 635,1H$$

Расчет вертикальной направляющей по нормальным напряжениям, возникающим от действия изгибающих моментов и продольного усилия, производится по формуле 50 (2):

$$\bullet \qquad \left(\frac{N_z}{A_n} + \frac{M_g + M_z}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

 N_z - продольное усилие;

 $A_{\scriptscriptstyle n}$ - площадь поперечного сечения направляющей;

 $M_{\scriptscriptstyle p}$ и $M_{\scriptscriptstyle g}$ - изгибающие моменты от вертикальных и горизонтальных нагрузок;

 W_{n} - максимальный момент сопротивления сечения;

 $\gamma_{,,}$ - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{635,1}{296,0} + \frac{\left(3,4 + 273,9\right) \times 10^3}{2696,4}\right) \times 0,95 = 99,7M\Pi a < 120 \times 1,0 = 120M\Pi a$$

Прочность направляющей по нормальным напряжениям обеспечивается.

Вывод: наиболее критическим для направляющей является сочетание нагрузок, характерных для рядовой зоны для летнего периода и угловой зоны.

4.1.4 Для прямоугольного в плане здания высотой 75м, расположенного в пятом ветровом районе. Рядовая зона №1. Летний период. Расчетная схема №2.

Исходные данные: Несущий кронштейн высотой 120мм, закреплен на направляющей сверху; к стене крепится двумя КИ.

Шаг кронштейнов (направляющих) по горизонтали – 600мм;

Шаг кронштейнов по вертикали – 900мм;

Длина направляющей – 3000мм;

Расстояние от основания до плит облицовки – 260мм;

Расчетная схема направляющей – неразрезная балка на четырех опорах. Верхняя опора №1 – шарнирно - неподвижная; опоры №2, №3 и №4 – шарнирно - подвижные опоры (рис.3).

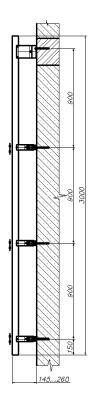


Рис.3. Расчетная схема №2.

Внутренние силовые факторы, действующие в поперечном сечении направляющей:

Изгибающий момент от вертикальной распределенной нагрузки:

$$M_{g} = 0,5 \times q_{z1} \times L_{z} \times e_{yc}$$

Где: $L_z = 0,90$ м – пролет вертикальной направляющей;

 $e_{yc} = 23,6$ мм – расстояние между координатами центров масс плитки и направляющей;

•
$$M_{e} = 0.5 \times 211, 7 \times 0.90 \times 0.024 = 2.3 H_{M}$$

Изгибающий момент от горизонтальной распределенной нагрузки:

$$M_{e} = 0.125 \times q_{v1} \times L_{z}^{2}$$

•
$$M_{c} = 0.125 \times 1725, 0 \times 0.90^{2} = 174,7 Hm$$

Продольное усилие от вертикальной распределенной нагрузки, создаваемое весом плит:

$$\bullet \qquad N_z = q_{z1} \times L$$

•
$$N_z = 211,7 \times 3,0 = 635,1H$$

Расчет вертикальной направляющей по нормальным напряжениям, возникающим от действия изгибающих моментов и продольного усилия, производится по формуле 50 (2):

$$\bullet \qquad \left(\frac{N_z}{A_n} + \frac{M_s + M_z}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

 $N_{\scriptscriptstyle \perp}$ - продольное усилие;

 $A_{\scriptscriptstyle n}$ - площадь поперечного сечения направляющей;

 $M_{\scriptscriptstyle \it E}$ и $M_{\scriptscriptstyle \it B}$ - изгибающие моменты от вертикальных и горизонтальных нагрузок;

 $W_{\scriptscriptstyle n}$ - максимальный момент сопротивления сечения;

 γ_n - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{635,1}{296,0} + \frac{(2,3+174,7)\times10^3}{2696,4}\right) \times 0,95 = 64,4M\Pi a < 120\times1,0 = 120M\Pi a$$

Прочность направляющей по нормальным напряжениям обеспечивается.

4.1.5 Для прямоугольного в плане здания высотой 75м, расположенного в пятом ветровом районе. Угловая зона №2. Расчетная схема №2.

Исходные данные: те же.

Внутренние силовые факторы, действующие в поперечном сечении направляющей:

Изгибающий момент от вертикальной распределенной нагрузки:

• $M_{g} = 2,3H_{M}$

Изгибающий момент от горизонтальной распределенной нагрузки:

•
$$M_{e} = 0.125 \times q_{v1} \times L_{z}^{2}$$

•
$$M_z = 0.125 \times 3137, 4 \times 0.90^2 = 317,7 Hm$$

Продольное усилие от вертикальной распределенной нагрузки, создаваемое весом плит:

•
$$N_z = 635,1H$$

Расчет вертикальной направляющей по нормальным напряжениям, возникающим от действия изгибающих моментов и продольного усилия, производится по формуле 50 (2):

$$\bullet \qquad \left(\frac{N_z}{A_n} + \frac{M_s + M_z}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

 N_z - продольное усилие;

 A_{n} - площадь поперечного сечения направляющей;

 $M_{\scriptscriptstyle 2}$ и $M_{\scriptscriptstyle 8}$ - изгибающие моменты от вертикальных и горизонтальных нагрузок;

 $W_{\scriptscriptstyle n}$ - максимальный момент сопротивления сечения;

 $\gamma_{\text{\tiny{n}}}$ - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{635,1}{296,0} + \frac{(2,3+317,7)\times10^3}{2696,4}\right) \times 0,95 = 114,7M\Pi a < 120\times1,0 = 120M\Pi a$$

Прочность направляющей по нормальным напряжениям обеспечивается.

4.1.6 Проверка прогиба в пролетах направляющей для условий по п. 4.1.5.

Наибольшие значения прогибов будут в крайних пролетах:

$$f = K \times \frac{q_{y1}^n \times L_z^4}{E \times J} = 0,00675 \times \frac{2241,0 \times 0.9^4}{70000,0 \times 118457,3 \times 10^{-6}} = 1,19 \times 10^{-3} \,\text{M} \left(1,19 \,\text{MM}\right)$$

Максимально допускаемый прогиб:

$$f_{\text{max}} = \frac{1}{200} \times L_z = \frac{1}{200} \times 900 = 4,5$$
 мм

4.2 Расчет соединений направляющей с несущим и опорным кронштейнами

4.2.1 Расчет соединения направляющей с несущим кронштейном для первого ветрового района

Расчет производится для расчетной схемы III, где на соединение действуют наибольшие нагрузки, (рис.4), для прямоугольного в плане здания высотой 75м, расположенного в первом ветровом и втором гололедном районах (г. Москва) для зон №1 и №2.

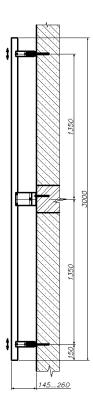


Рис.4. Расчетная схема III.

Такую схему целесообразно использовать при установке несущего кронштейна в плиту перекрытия, опорные кронштейны устанавливаются в материал стенового заполнения с малой прочностью.

Исходные данные:

Удлинители несущего кронштейна высотой 120мм, закреплены на направляющей в центре; крепление к направляющей производится двумя заклепками Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровым расстоянием 90мм.

Шаг кронштейнов (направляющих) по горизонтали – 600мм;

Шаг кронштейнов по вертикали – 1350мм;

Длина направляющей – 3000мм;

Расстояние от шарнира несущего кронштейна до соединения удлинителей с направляющей, при максимальном относе плит облицовки – 120мм;

Нагрузки, действующие на узел крепления в зоне №1:

•
$$N = |R_2| = 1,25 \times q_{y1} \times L_z = 1,25 \times 661,5 \times 1,35 = 1116,2H$$

•
$$P = q_{z1} \times L = 211,7 \times 3,0 = 635,1H$$

•
$$M_p = P_z \times e = 635, 1 \times 0, 12 = 76, 2HM$$

•
$$M_N = 0.125 \times q_{y1} \times L_z^2 = 0.125 \times 661.5 \times 1.35^2 = 150.7 Hm$$

•
$$M_{\Sigma} = M_p + M_N = 76, 2 + 150, 7 = 226, 9H_M$$

Нагрузки, действующие на узел крепления в зоне №2:

•
$$N = |R_2| = 1,25 \times q_{y1} \times L_z = 1,25 \times 1202,3 \times 1,35 = 2028,9H$$

•
$$P = q_{z1} \times L = 211,7 \times 3,0 = 635,1H$$

•
$$M_p = P_z \times e = 635, 1 \times 0, 12 = 76, 2HM$$

•
$$M_N = 0.125 \times q_{v1} \times L_z^2 = 0.125 \times 1202, 3 \times 1.35^2 = 273.9 Hm$$

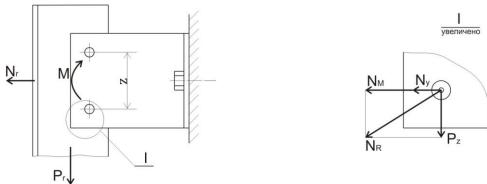
•
$$M_{\Sigma} = M_n + M_N = 76, 2 + 273, 9 = 350, 1H_M$$

Нагрузки, действующие на точку крепления:

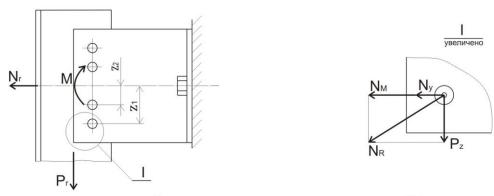
Для вычисления результирующего усилия N_R используется схема, показанная на рис.5.а.

Результирующее усилие, действующее на заклепку в зоне №1:

•
$$N_R = \sqrt{(N_v + N_M)^2 + P_z^2}$$


Где

$$N_{y} = \frac{N}{n} = \frac{1116,2}{2} = 558,1H$$
 - горизонтальное расчетное ветровое усилие на одну заклепку; n – количество заклепок в соединении;


$$N_{M}=rac{M}{z}=rac{226,9}{0.09}=2521,1H\,$$
 - горизонтальное расчетное усилие на одну заклепку от

действия суммарного момента в соединении (0,09м – расстояние между заклепками);

$$P_z = \frac{P}{n} = \frac{635,1}{2} = 317,6H$$
 - вертикальное расчетное усилие на одну заклепку.

а) соединение выполнено двумя КИ

б) соединение выполнено четырьмя КИ

Рис.5

•
$$N_R = \sqrt{(558,1+2521,1)^2 + 317,6^2} = 3095,5H$$

Расчет прочности материала вертикальной направляющей, контактирующей с заклепкой на смятие производится формуле:

•
$$\frac{N_R}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где:

 $\delta = 3,0$ мм – толщина направляющей;

d = 6,4*мм* – диаметр заклепки;

 $R_{lo} = 195 M\Pi a$ – расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_{_{n}}=0,95\,$ – коэффициент надежности по назначению;

 $\gamma_c = 0,9$ – коэффициент условий работы.

•
$$\frac{3095,5}{6,4\times3,0}\times0,95=153,2M\Pi a \triangleleft 195,0\times0,9=175,5M\Pi a$$

Условие прочности выполняется.

Проверка прочности заклепки на срез:

Допускаемое усилие на срез заклепки \emptyset 6,4 из коррозионностойкой стали (A2/A2) по данным TC 2490-09 составляет 3360H.

Условие прочности выполняется.

Вывод: Соединение на двух заклепках Ø6,4 из коррозионностойкой стали (A2/A2), полностью удовлетворяет условиям прочности.

Результирующее усилие, действующее на заклепку в зоне №2:

•
$$N_R = \sqrt{(N_y + N_M)^2 + P_z^2}$$

Где:

 $N_{_{y}}=rac{N}{n}=rac{2028,0}{2}=1014,0H$ - горизонтальное расчетное ветровое усилие на одну

заклепку; n - количество заклепок в соединении;

$$N_{\scriptscriptstyle M} = \frac{M}{z} = \frac{350,1}{0,09} = 3890,0H$$
 - горизонтальное расчетное усилие на одну заклепку от

действия суммарного момента в соединении (0,09м – расстояние между заклепками);

$$P_z = \frac{P}{n} = \frac{635.1}{2} = 317.6H$$
 - вертикальное расчетное усилие на одну заклепку.

$$N_R = \sqrt{(1014, 0 + 3890, 0)^2 + 317, 6^2} = 4914, 3H$$

Расчет прочности материала вертикальной направляющей, контактирующей с заклепкой на смятие производится формуле:

$$\bullet \qquad \frac{N_R}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где

 $\delta = 3.0 MM$ – толщина направляющей;

d = 6,4мм – диаметр заклепки;

 $R_{lp} = 195 M\Pi a$ – расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_{n} = 0.95$ – коэффициент надежности по назначению;

 $\gamma_c = 0,9$ – коэффициент условий работы.

•
$$\frac{4914,3}{6.4\times3.0}\times0,95=243,2M\Pi a>195,0\times0,9=175,5M\Pi a$$

Условие прочности не выполняется.

Проверка прочности заклепки на срез:

Допускаемое усилие на срез заклепки Ø6,4 из коррозионностойкой стали (A2/A2) по данным TC 2490-09 составляет 3360H.

Условие прочности не выполняется.

Вывод: Соединение направляющей с удлинителями несущего кронштейна двумя заклепками Ø6,4 из коррозионностойкой стали (A2/A2) не удовлетворяет условиям прочности.

Усиливаем соединение, добавляя вторую пару заклепок.

Исходные данные:

Удлинители несущего кронштейна высотой 120мм, закреплены на направляющей в центре; крепление к направляющей производится двумя парами заклепок Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровыми расстояниями: 100мм и 60мм.

Для вычисления результирующего усилия N_R используется схема, показанная на рис.4.б.

Результирующее усилие, действующее на заклепку:

•
$$N_R = \sqrt{(N_y + N_M)^2 + P_z^2}$$

Где:

 $N_{_{y}}=\frac{N}{n}=\frac{2028,0}{4}=507,0H$ - горизонтальное расчетное ветровое усилие на одну заклепку; n – количество заклепок в соединении;

$$N_{\scriptscriptstyle M} = \frac{M \times z_{\scriptscriptstyle 1}}{2 \times \left(z_{\scriptscriptstyle 1}^2 + z_{\scriptscriptstyle 2}^2\right)} = \frac{350,1 \times 0,050}{2 \times \left(0,050^2 + 0,030^2\right)} = 2573,5 H$$
 - горизонтальное расчетное

усилие на одну заклепку от действия суммарного момента в соединении;

 $z_{
m l} = 50 {\it mm}$ - расстояние от внешней точки крепления до нейтрального слоя соединения;

 $z_2 = 30 {\it мм}$ - расстояние от внутренней точки крепления до нейтрального слоя соединения;

$$P_z = \frac{P}{n} = \frac{635.1}{4} = 158.8H$$
 - вертикальное расчетное усилие на одну заклепку.

•
$$N_R = \sqrt{(507, 0 + 2573, 5)^2 + 158, 8^2} = 3084, 6H$$

Расчет прочности материала вертикальной направляющей, контактирующей с заклепкой на смятие производится формуле:

$$\bullet \qquad \frac{N_R}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где:

 $\delta = 3,0$ мм – толщина направляющей;

d = 6,4мм – диаметр заклепки;

 $R_{lo} = 195 M\Pi a$ – расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_{_{n}}=0,95\,$ – коэффициент надежности по назначению;

 $\gamma_{c} = 0,9$ – коэффициент условий работы.

•
$$\frac{3084.6}{6.4 \times 3.0} \times 0.95 = 152.6M\Pi a < 195.0 \times 0.9 = 175.5M\Pi a$$

Условие прочности выполняется.

Проверка прочности заклепки на срез:

Допускаемое усилие на срез заклепки Ø6,4 из коррозионностойкой стали (A2/A2) по данным TC 2490-09 составляет 3360H.

Заклепка по прочности проходит.

Вывод: Соединение направляющей с удлинителями несущего кронштейна двумя парами заклепок Ø6,4 с межцентровыми расстояниями 60мм и 100мм из коррозионностойкой стали (A2/A2) удовлетворяет условиям прочности.

Для применения такой схемы в других ветровых районах требуется увеличение межцентровых расстояний и, как следствие - высоты удлинителей, что должно подтверждаться расчетом.

4.2.2 Расчет соединения направляющей с опорным кронштейном для первого ветрового района

Расчет производится для расчетной схемы I, где на соединение среднего кронштейна с направляющей действуют наибольшие нагрузки (рис. 2), для прямоугольного в плане здания высотой 75м, расположенного в первом ветровом и втором гололедном районах (г. Москва) для зоны №2.

Нагрузки, действующие на узел крепления в зоне №2:

•
$$N = |R_2| = 1,25 \times q_{v1} \times L_z = 1,25 \times 1202,3 \times 1,35 = 2029,9H$$

Наибольшая нагрузка, действующая на точку крепления:

•
$$N = 2029.9H$$

Расчет прочности материала вертикальной направляющей, контактирующей с заклепкой на смятие производится формуле:

•
$$\frac{N}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где:

 $\delta = 3,0$ мм – толщина направляющей;

d = 6,4*мм* – диаметр заклепки;

 $R_{lo} = 195 M\Pi a$ – расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_{n} = 0.95$ – коэффициент надежности по назначению;

 $\gamma_{c} = 0,9$ – коэффициент условий работы.

•
$$\frac{2029,9}{6.4\times3.0}\times0,95=100,4M\Pi a < 195,0\times0,9=175,5M\Pi a$$

Условие прочности выполняется.

Проверка прочности заклепки на срез:

Допускаемое усилие на срез заклепки \emptyset 6,4 из коррозионностойкой стали (A2/A2) по данным TC 2490-09 составляет 3360H.

Условие прочности выполняется.

Вывод: Соединение направляющей с удлинителями опорного кронштейна одной заклепкой Ø6,4 из коррозионностойкой стали (A2/A2) удовлетворяет условиям прочности.

4.2.3 Расчет соединения направляющей с несущим кронштейном для пятого ветрового района

Расчет производится для расчетной схемы II, (рис.3), для прямоугольного в плане здания высотой 75м, расположенного в пятом ветровом районе для зон №1 и №2.

Исходные данные:

Удлинители несущего кронштейна высотой 120мм, закреплены на направляющей в верхней части; крепление к направляющей производится двумя заклепками Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровым расстоянием 90мм.

Шаг кронштейнов (направляющих) по горизонтали – 600мм;

Шаг кронштейнов по вертикали – 900мм;

Длина направляющей – 3000мм;

Расстояние от шарнира несущего кронштейна до соединения удлинителей с направляющей, при максимальном относе плит облицовки – 120мм;

Нагрузки, действующие на узел крепления в зоне №1:

•
$$N = |R_1| = 0.4 \times q_{y1} \times L_z = 0.4 \times 1725, 0 \times 0.90 = 621, 0H$$

•
$$P = q_{z1} \times L = 211,7 \times 3,0 = 635,1H$$

•
$$M_p = P_z \times e = 635, 1 \times 0, 12 = 76, 2HM$$

•
$$M_N = 0$$

Нагрузки, действующие на узел крепления в зоне №2:

•
$$N = |R_1| = 0.4 \times q_{y1} \times L_z = 0.4 \times 3137, 4 \times 0.9 = 1129, 5H$$

•
$$P = q_{z1} \times L = 211,7 \times 3,0 = 635,1H$$

•
$$M_p = P_z \times e = 635, 1 \times 0, 12 = 76, 2HM$$

$$\bullet \qquad M_{N} = 0$$

Нагрузки, действующие на точку крепления:

Для вычисления результирующего усилия N_R используется схема, показанная на рис.5.а.

Результирующее усилие, действующее на заклепку в зоне №1:

•
$$N_R = \sqrt{(N_y + N_M)^2 + P_z^2}$$

Где:

$$N_{_{y}}=rac{N}{n}=rac{621,2}{2}=310,6H$$
 - горизонтальное расчетное ветровое усилие на одну заклепку; n – количество заклепок в соединении;

$$N_{\scriptscriptstyle M} = \frac{M_{\scriptscriptstyle p}}{z} = \frac{76.2}{0.09} = 846.7 H$$
 - горизонтальное расчетное усилие на одну заклепку от

действия момента в соединении (0,09м – расстояние между заклепками);

$$P_z = \frac{P}{n} = \frac{635.1}{2} = 317.6H$$
 - вертикальное расчетное усилие на одну заклепку.

•
$$N_R = \sqrt{(310,6+846,7)^2 + 317,6^2} = 1200,1H$$

Расчет прочности материала вертикальной направляющей, контактирующей с заклепкой на смятие производится формуле:

$$\bullet \qquad \frac{N_R}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где:

 $\delta = 3,0$ мм – толщина направляющей;

d = 6,4мм – диаметр заклепки;

 $R_{l_{D}} = 195 M\Pi a$ – расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_n = 0,95$ – коэффициент надежности по назначению;

 $\gamma_{c} = 0,9$ – коэффициент условий работы.

•
$$\frac{1200,1}{6,4\times3,0}\times0,95=59,4M\Pi a < 195,0\times0,9=175,5M\Pi a$$

Условие прочности выполняется.

Проверка прочности заклепки на срез:

Допускаемое усилие на срез заклепки Ø6,4 из коррозионностойкой стали (A2/A2) по данным TC 2490-09 составляет 3360H.

Условие прочности выполняется.

Вывод: Соединение на заклепках Ø6,4 из коррозионностойкой стали (A2/A2) полностью удовлетворяет условиям прочности.

Результирующее усилие, действующее на заклепку в зоне №2:

•
$$N_R = \sqrt{(N_y + N_M)^2 + P_z^2}$$

Гле

$$N_{y} = \frac{N}{n} = \frac{1129,5}{2} = 564,8H$$
 - горизонтальное расчетное ветровое усилие на одну

заклепку; n – количество заклепок в соединении;

$$N_{\scriptscriptstyle M} = \frac{M_{\scriptscriptstyle p}}{z} = \frac{76,2}{0,09} = 846,7H$$
 - горизонтальное расчетное усилие на одну заклепку от

действия момента в соединении (0,09м – расстояние между заклепками);

$$P_z = \frac{P}{n} = \frac{635,1}{2} = 317,6H$$
 - вертикальное расчетное усилие на одну заклепку.

•
$$N_R = \sqrt{(564, 8 + 846, 7)^2 + 317, 6^2} = 1446, 7H$$

Расчет прочности материала вертикальной направляющей, контактирующей с заклепкой на смятие производится формуле:

•
$$\frac{N_R}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где:

 $\delta = 3,0$ мм – толщина направляющей;

d = 6,4мм – диаметр заклепки;

 $R_{ln} = 195 M\Pi a$ – расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_{_{n}} = 0,95$ – коэффициент надежности по назначению;

 $\gamma_{c} = 0,9$ – коэффициент условий работы.

•
$$\frac{1446,7}{6,4\times3,0}\times0,95=71,6M\Pi a \triangleleft 195,0\times0,9=175,5M\Pi a$$

Условие прочности выполняется.

Проверка прочности заклепки на срез:

Допускаемое усилие на срез заклепки Ø6,4 из коррозионностойкой стали (A2/A2) по данным TC 2490-09 составляет 3360H.

Условие прочности выполняется.

Вывод: Соединение направляющей с удлинителями несущего кронштейна двумя заклепки Ø6,4 из коррозионностойкой стали (A2/A2) полностью удовлетворяет условиям прочности.

4.2.4 Расчет соединения направляющей с опорным кронштейном для пятого ветрового района

Расчет производится для Схемы III, (рис.4), для прямоугольного в плане здания высотой 75м, расположенного в пятом ветровом районе для зоны №2.

Нагрузки, действующие на узел крепления в зоне №2:

•
$$N = |R_{2.3}| = 1.1 \times q_{v1} \times L_z = 1.1 \times 3137, 4 \times 0.9 = 3106, 0H$$

Нагрузки, действующие на точку крепления:

• N = 3106.0H

Расчет прочности материала вертикальной направляющей, контактирующей с заклепкой на смятие производится формуле:

$$\bullet \qquad \frac{N}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где:

 $\delta = 3,0$ мм – толщина направляющей;

d = 6,4мм – диаметр заклепки;

 $R_{{\scriptscriptstyle I}{\scriptscriptstyle D}} = 195 M\Pi a$ – расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_{\scriptscriptstyle n} = 0,95\,$ – коэффициент надежности по назначению;

 $\gamma_{c} = 0,9$ – коэффициент условий работы.

•
$$\frac{3106,0}{6,4\times3,0}\times0,95=153,7M\Pi a < 195,0\times0,9=175,5M\Pi a$$

Условие прочности выполняется.

Проверка прочности заклепки на срез:

Допускаемое усилие на срез заклепки Ø6,4 из коррозионностойкой стали (A2/A2) по данным TC 2490-09 составляет 3360H.

Условие прочности выполняется.

Вывод: Соединение направляющей с удлинителями опорного кронштейна одной заклепкой Ø6,4 из коррозионностойкой стали (A2/A2) удовлетворяет условиям прочности.

4.3 Расчет удлинителей несущего кронштейна

Удлинители несущего кронштейна с одной стороны соединены шарнирно с несущим кронштейном, а с другой стороны – жестко с направляющей, образуя в месте соединения вилку.

Опасное сечение удлинителей несущего кронштейна – ослабленное отверстиями сечение в месте соединения с направляющими.

Геометрические характеристики поперечного, ослабленного четырьмя отверстиями, общего сечения удлинителей несущего кронштейна:

- $\delta = 120,0 \text{ MM};$
- t = 3.0 MM;
- $A = 648 \text{ mm}^2$;
- $Jx = 717984,0 \text{ MM}^4$;
- $Wx = 11966.4 \text{ MM}^3$;

Наибольшие определенные усилия на соединение – в первом ветровом районе, в рядовой зоне №1, для расчетной схемы III.

Внутренние силовые факторы, действующие в ослабленном, наиболее нагруженном сечении удлинителей:

Изгибающий момент:

•
$$M_{\Sigma} = 226,9 H_{M}$$

Продольное усилие:

•
$$N = 1116, 2H$$

Поперечное усилие:

•
$$P = 635,1H$$

Расчет удлинителей по нормальным напряжениям, возникающим от действия суммарного изгибающего момента и продольного усилия, производится по формуле 50 (2):

$$\left(\frac{N}{A_n} + \frac{M_{\Sigma}}{W_n}\right) \times \gamma_n \le R_{y} \times \gamma_c$$

N - продольное усилие;

 A_{n} - площадь поперечного сечения удлинителей;

 $M_{\scriptscriptstyle \Sigma}$ - суммарный изгибающий момент от действия вертикальных и горизонтальных нагрузок;

 $W_{\scriptscriptstyle n}$ - момент сопротивления сечения;

 γ_n - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{1116,2}{648,0} + \frac{226,9 \times 10^3}{11966,4}\right) \times 0,95 = 19,6M\Pi a < 120 \times 1,0 = 120M\Pi a$$

Прочность удлинителей по нормальным напряжениям обеспечивается.

Геометрические характеристики поперечного, ослабленного восемью отверстиями, общего сечения удлинителей несущего кронштейна:

- $\delta = 120,0 \text{ MM};$
- t = 3.0 MM;
- $A = 576 \text{ mm}^2$;
- $Jx = 622350,0 \text{ MM}^4$;
- $Wx = 10372,5 \text{ MM}^3$;

Наибольшие определенные усилия на соединение – в первом ветровом районе, в угловой зоне №2, для расчетной схемы III.

Внутренние силовые факторы, действующие в ослабленном, наиболее нагруженном сечении удлинителей:

Изгибающий момент:

•
$$M_{\Sigma} = 350,1H_{M}$$

Продольное усилие:

•
$$N = 2028,9H$$

оперечное усилие:

•
$$P = 635,1H$$

Расчет удлинителей по нормальным напряжениям, возникающим от действия суммарного изгибающего момента и продольного усилия, производится по формуле 50 (2):

$$\bullet \qquad \left(\frac{N}{A_n} + \frac{M_{\Sigma}}{W_n}\right) \times \gamma_n \le R_{y} \times \gamma_c$$

N - продольное усилие;

 A_{n} - площадь поперечного сечения удлинителей;

 $M_{\scriptscriptstyle \Sigma}$ - суммарный изгибающий момент от действия вертикальных и горизонтальных нагрузок;

 W_{n} - момент сопротивления сечения;

 γ_n - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{2028,9}{576,0} + \frac{350,1 \times 10^3}{10372,5}\right) \times 0,95 = 35,4M\Pi a < 120 \times 1,0 = 120M\Pi a$$

Прочность удлинителей по нормальным напряжениям обеспечивается.

4.4 Проверка на устойчивость выступающей части флажка:

Геометрические характеристики:

Длина свободной части флажка $l = 80_{MM}$;

Радиус инерции сечения i = 0.866 MM;

Площадь поперечного сечения A = 150,0 мм².

Принимаем коэффициент длины $\mu = 1$.

Определяем гибкость свободной части флажка:

$$\lambda = \frac{\mu l}{i} = \frac{1 \times 80}{0.866} = 92$$

Находим по таблице 2 (3) для сплава АД31Т1 коэффициент $\, \varphi \, : \,$

$$\varphi = 0,450$$

Допускаемые напряжения на устойчивость:

•
$$\left[\sigma_{y}\right] = \varphi \times R_{y} \times \gamma_{c} = 0,450 \times 120 \times 1 = 54,0 M\Pi a$$

Наибольшие сжимающие напряжения в поперечном сечении флажка:

•
$$\sigma = \frac{N}{A} = \frac{3106,0}{150,0} = 20,7M\Pi a$$

Условие устойчивости $\left[\sigma_{y}\right]\geq\sigma$ выполняется.

4.5 Расчет на прочность несущего кронштейна

Расчетная схема III, для прямоугольного в плане здания высотой 75м, расположенного в первом ветровом и втором гололедном районах (г. Москва) в зоне №2.

Наибольшие определенные нагрузки, действующие на кронштейн:

•
$$N = 2028,9H$$

$$P = 635,1H$$

Геометрические характеристики поперечного сечения выступающей полки несущего кронштейна:

- h= 120,0 MM;
- b = 3,0 MM;

- $A = 360,0 \text{ mm}^2$;
- $Wx = 7200.0 \text{ mm}^3$;

Изгибающий момент в опасном сечении выступающей полки:

•
$$M = P \times l = 635, 1 \times 89, 0 = 56523, 9 H_{MM}$$

Где l - плечо действия силы.

Расчет опасного сечения выступающей полки несущего кронштейна по нормальным напряжениям, возникающим от действия изгибающего момента и продольного усилия, производится по формуле 50 (2):

$$\bullet \qquad \left(\frac{N}{A_n} + \frac{M}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

N - продольное усилие на полку;

 A_{n} - площадь поперечного сечения полки кронштейна;

M - изгибающий момент от действия вертикальной силы;

 W_{n} - момент сопротивления сечения;

 $\gamma_{\scriptscriptstyle n}$ - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{2028,9}{360,0} + \frac{56523,9}{7200,0}\right) \times 0,95 = 12,8M\Pi a < 120 \times 1,0 = 120,0M\Pi a$$

Прочность опасного сечения по нормальным напряжениям обеспечивается.

Проверка материала, контактирующего с болтом на смятие:

Результирующее усилие, действующее на болт в шарнирном соединении:

$$\bullet \qquad N_R = \sqrt{N^2 + P^2}$$

•
$$N_R = \sqrt{2028, 9^2 + 635, 1^2} = 2126, 0H$$

Расчет прочности материала несущего кронштейна, контактирующего с болтом на смятие производится формуле:

$$\bullet \qquad \frac{N_R}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где:

 $\delta = 3.0 MM$ – толщина полки кронштейна;

d = 8,0мм – диаметр болта;

 $R_{l_0} = 190 M\Pi a$ – расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_{n} = 0.95$ – коэффициент надежности по назначению;

 $\gamma_{c} = 0,9$ – коэффициент условий работы.

•
$$\frac{2126,0}{8.0\times3.0}\times0,95=84,2M\Pi a < 190,0\times0,9=171,0M\Pi a$$

Условие прочности выполняется.

4.6 Расчет на прочность опорного кронштейна

Расчет производится для расчетной схемы II, (рис.3), для прямоугольного в плане здания высотой 75м, расположенного в пятом ветровом районе для зоны №2.

Усилия, действующие на кронштейн (см. п.4.2.4):

•
$$N = 3106,0H$$

Усилие, передаваемое флажком на каждое из двух мест крепления в кронштейне:

•
$$N_y = \frac{N}{2} = \frac{3106,0}{2} = 1553,0H$$

Опасные сечения в опорном кронштейне (рис.6):

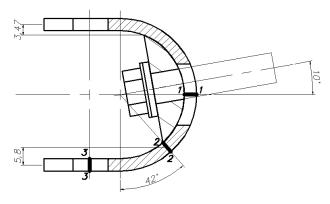


Рис.6.

- а) горизонтальное сечение 1-1, проходящее через точку крепления кронштейна к стене, разгружено вкладышем и опорой кронштейна, которые плотно притянуты к основанию общим крепежным изделием, не может считаться опасным;
- б) сечение 2-2, проходящее через центр окружности кронштейна и линию пересечения плоскости вкладыша с внутренней поверхностью кронштейна, с учетом максимальной неровности стены в 10°;
- в) вертикальное сечение 3-3, проходящее через центры отверстий кронштейна.

Поскольку опорный кронштейн представляет собой кривой стержень постоянного сечения, для которого R_0 > 5h, то напряжения в поперечном сечении «2-2» определяем по формулам для прямых стержней.

Геометрические характеристики опасного сечения «2-2»:

- B = 40,0 MM;
- h = 4,0 MM;
- $A = 160 \text{ mm}^2$;
- $Wx = 106,7 \text{ MM}^3$;

Изгибающий момент в сечении:

•
$$M = N_y \times l_2 = 1553, 0 \times 5, 8 = 9007, 4H_{MM}$$

Где l_2 - плечо действия силы.

Расчет сечения «2-2» по нормальным напряжениям, возникающим от действия изгибающего момента и продольного усилия, производится по формуле 50 (2):

$$\left(\frac{N_{y}}{A_{n}} + \frac{M}{W_{n}}\right) \times \gamma_{n} \leq R_{y} \times \gamma_{c}$$

 $N_{_{\scriptscriptstyle \rm V}}$ - продольное усилие на полку;

 A_n - площадь поперечного сечения полки кронштейна;

M - изгибающий момент от действия горизонтальной силы;

 $W_{,,}$ - момент сопротивления сечения;

 $\gamma_{,,}$ - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{1553,0}{160,0} + \frac{9007,4}{106,7}\right) \times 0,95 = 89,4M\Pi a < 120 \times 1,0 = 120M\Pi a$$

Прочность опасного сечения «2-2» по нормальным напряжениям обеспечивается.

Геометрические характеристики опасного сечения «3-3»:

- B = 4,0 MM;
- h = 14,0 MM;
- $A = 56 \text{ mm}^2$;
- $Wx = 130.6 \text{ MM}^3$;

Изгибающий момент в сечении:

•
$$M = \frac{N_y}{2} \times l_3 = \frac{1553,0}{2} \times 11,5 = 8929,8 H\text{MM}$$

Где l_3 - плечо действия силы.

Расчет сечения «3-3» по нормальным напряжениям, возникающим от действия изгибающего момента и продольного усилия, производится по формуле 50 (2):

$$\bullet \qquad \left(\frac{N_{y1}}{A_n} + \frac{M}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

 N_{v1} - продольное усилие на половину полки;

 $A_{\!\scriptscriptstyle n}$ - площадь поперечного сечения полки кронштейна;

M - изгибающий момент от действия горизонтальной силы;

 W_{n} - момент сопротивления сечения;

 $\gamma_{\scriptscriptstyle n}$ - коэффициент надежности по назначению;

 γ_{c} - коэффициент условий работы;

•
$$\left(\frac{776,5}{56,0} + \frac{8929,8}{130,6}\right) \times 0,95 = 78,1 M\Pi a < 120 \times 1,0 = 120 M\Pi a$$

Прочность опасного сечения «3-3» по нормальным напряжениям обеспечивается.

4.7 Расчет на прочность вкладыша опорного кронштейна

На вкладыш действует распределенная по цилиндрической поверхности нагрузка, передаваемая опорным кронштейном. В запас прочности считаем, что нагрузка распределяется по двум линиям контакта с кронштейном по краям вкладыша.

Геометрические характеристики опасного сечения:

- B = 39.0 MM;
- h = 10,0 мм;
- $A = 390 \text{ mm}^2$;
- $Wx = 650 \text{ MM}^3$;

Изгибающий момент в опасном сечении:

•
$$M = \frac{N}{4} \times h = \frac{1553,0}{2} \times 11,5 = 8929,8 H_{MM}$$

Где h - высота вкладыша.

Расчет сечения по нормальным напряжениям, возникающим от действия изгибающего момента производится по формуле:

$$\left(\frac{M}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

M - изгибающий момент от действия горизонтальной силы;

 $W_{\scriptscriptstyle n}$ - момент сопротивления сечения;

 $\gamma_{\scriptscriptstyle n}$ - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{8929,8}{650,0}\right) \times 0,95 = 13,1 < 120,0 \times 1,0 = 120,0 M\Pi a$$

Прочность вкладыша по нормальным напряжениям обеспечивается.

5. РАСЧЕТ НЕСУЩЕЙ КОНСТРУКЦИИ ДЛЯ РАСЧЕТНОЙ СХЕМЫ IV

Эта схема от описанных выше отличается тем, что в качестве несущих кронштейнов используются один или два опорных кронштейна с увеличенными по высоте удлинителями флажков.

Такие схемы могут применяться для крепления к стенам направляющих уменьшенной длины, например, под оконными проемами, или для крепления полноразмерных направляющих к кладкам из стеновых каменных материалов.

Расчет производится для расчетной схемы IV, (рис.7), для прямоугольного в плане здания высотой 75м, расположенного в первом и пятом ветровом районах для зоны №2.

Шаг кронштейнов (направляющих) по горизонтали – 600мм;

Шаг кронштейнов по вертикали – 900мм;

Длина направляющей – 3000мм;

Расстояние от основания до места соединения флажков с направляющей, при максимальном относе плит облицовки – 213 мм;

5.1 Расчет соединения удлинителей флажков с направляющей

Исходные данные по несущей конструкции для V ветрового района:

Флажки высотой 120мм, закреплены на направляющей в центральных опорах 2 и 3; крепление к направляющей производится двумя парами заклепок Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровыми расстояниями: 100мм и 60мм.

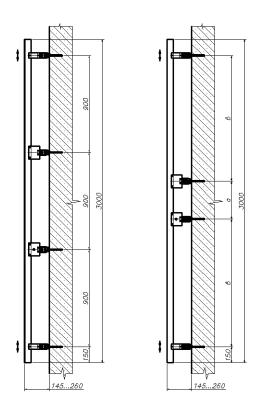


Рис.7.

Нагрузки, действующие на узел крепления в пятом ветровом районе:

•
$$N = |R_{2,3}| = 1.1 \times q_{y1} \times L_z = 1.1 \times 3137, 4 \times 0.9 = 3106, 0H$$

•
$$P = \frac{2}{3} \times q_{z1} \times L = \frac{2}{3} \times 211, 7 \times 3, 0 = 423, 4H$$

•
$$M_{N2,3} = 0.10 \times q_{y1} \times L_z^2 = 0.10 \times 3137.4 \times 0.9^2 = 254.1 Hm$$

•
$$M_p = P \times e = 423, 4 \times 0, 213 = 90, 2H_M$$

е – плечо реакции (от стены до соединения);

•
$$M_{\Sigma} = M_{N2,3} + M_{P2} = 254,1 + 90,2 = 344,3HM$$

Для вычисления результирующего усилия N_R , действующего на наиболее нагруженную заклепку, используется схема, показанная на рис.5.б.

Результирующее усилие, действующее на заклепку:

•
$$N_R = \sqrt{(N_v + N_M)^2 + P_z^2}$$

Где

 $N_{_{y}}=rac{N}{n}=rac{3106,0}{4}=776,5H$ - горизонтальное расчетное ветровое усилие на одну заклепку; n – количество заклепок в соединении;

$$N_{\scriptscriptstyle M} = \frac{M_{\scriptscriptstyle \Sigma} \times z_{\scriptscriptstyle 1}}{2 \times \left(z_{\scriptscriptstyle 1}^2 + z_{\scriptscriptstyle 2}^2\right)} = \frac{344,3 \times 0,050}{2 \times \left(0,050^2 + 0,030^2\right)} = 2001,7H$$
 - горизонтальное расчетное

усилие на одну заклепку от действия суммарного момента в соединении;

 $z_{\rm l} = 50 {\it mm}$ - расстояние от внешней точки крепления до нейтрального слоя соединения;

 $z_2 = 30$ мм - расстояние от внутренней точки крепления до нейтрального слоя соединения;

$$P_z = \frac{P}{n} = \frac{423,4}{4} = 105,8H$$
 - вертикальное расчетное усилие на одну заклепку.

•
$$N_R = \sqrt{(776,5+2001,7)^2+105,8^2} = 2780,2H$$

Расчет прочности материала вертикальной направляющей, контактирующей с заклепкой на смятие производится формуле:

$$\bullet \qquad \frac{N_R}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где:

 $\delta = 3,0$ мм – толщина направляющей;

d = 6,4*мм* – диаметр заклепки;

 $R_{ln} = 195 M\Pi a$ – расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_n = 0.95$ – коэффициент надежности по назначению;

 $\gamma_{c} = 0,9$ – коэффициент условий работы.

•
$$\frac{2780,2}{6,4\times3,0}\times0,95=137,6M\Pi a < 195,0\times0,9=175,5M\Pi a$$

Условие прочности выполняется.

Проверка прочности заклепки на срез:

Допускаемое усилие на срез заклепки Ø6,4 из коррозионностойкой стали (A2/A2) по данным TC 2490-09 составляет 3360H.

Заклепка по прочности проходит.

Вывод: Соединение направляющей с удлинителями флажков высотой 120мм двумя парами заклепок Ø6,4 с межцентровыми расстояниями 60мм и 100мм из коррозионностойкой стали (A2/A2) удовлетворяет условиям прочности.

Исходные данные по несущей конструкции для I ветрового района:

Флажки высотой 100мм, закреплены на направляющей в центральных опорах 2 и 3; крепление к направляющей производится одной парой заклепок Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровым расстоянием 80мм.

Нагрузки, действующие на узел крепления в первом ветровом районе в краевой зоне №2:

•
$$N = |R_{2,3}| = 1,1 \times q_{y1} \times L_z = 1,1 \times 1202,3 \times 0,9 = 1190,3H$$

•
$$P = \frac{2}{3} \times q_{z1} \times L = \frac{2}{3} \times 211, 7 \times 3, 0 = 423, 4H$$

•
$$M_{N2.3} = 0.10 \times q_{v1} \times L_z^2 = 0.10 \times 1202.3 \times 0.9^2 = 97.4 Hm$$

•
$$M_p = P \times e = 423, 4 \times 0, 213 = 90, 2H_M$$
 е – плечо реакции (от стены до соединения);

•
$$M_{\Sigma} = M_{N2.3} + M_{P2} = 97.4 + 90.2 = 187.6 Hm$$

Для вычисления результирующего усилия N_R , действующего на наиболее нагруженную заклепку, используется схема, показанная на рис.5.а.

Результирующее усилие, действующее на заклепку:

•
$$N_R = \sqrt{(N_y + N_M)^2 + P_z^2}$$

Где:

 $N_{y} = \frac{N}{n} = \frac{1190,3}{2} = 595,2H$ - горизонтальное расчетное ветровое усилие на одну заклепку; n – количество заклепок в соединении;

 $N_{M}=rac{M_{\Sigma}}{z}=rac{187.6}{0.08}=2345,0H$ - горизонтальное расчетное усилие на одну заклепку от действия момента в соединении (0,08м – расстояние между заклепками);

 $P_z = \frac{P}{n} = \frac{423,4}{2} = 211,7H$ - вертикальное расчетное усилие на одну заклепку.

•
$$N_R = \sqrt{(595, 2 + 2345, 0)^2 + 211, 7^2} = 2947, 8H$$

Расчет прочности материала вертикальной направляющей, контактирующей с заклепкой на смятие производится формуле:

$$\bullet \qquad \frac{N_R}{d \times \delta} \times \gamma_n \le R_{lp} \times \gamma_c$$

Где:

 $\delta = 3,0$ мм – толщина направляющей;

d = 6,4мм – диаметр заклепки;

 $R_{_{\! In}} = 195 M\Pi a$ — расчетное сопротивление алюминиевого сплава на смятие;

 $\gamma_{_{n}} = 0,95\,$ – коэффициент надежности по назначению;

 $\gamma_{c} = 0,9$ – коэффициент условий работы.

•
$$\frac{2947.8}{6.4 \times 3.0} \times 0.95 = 145.9 M\Pi a < 195.0 \times 0.9 = 175.5 M\Pi a$$

Условие прочности выполняется.

Проверка прочности заклепки на срез:

Допускаемое усилие на срез заклепки Ø6,4 из коррозионностойкой стали (A2/A2) по данным TC 2490-09 составляет 3360H.

Заклепка по прочности проходит.

Вывод: Соединение направляющей с удлинителями флажков высотой 100мм одной парой заклепок Ø6,4 с межцентровым расстоянием 80мм из коррозионностойкой стали (A2/A2) удовлетворяет условиям прочности.

5.2 Расчет соединения удлинителей флажков с флажком

Расчет производится для расчетной схемы IV, (рис.7), для прямоугольного в плане здания высотой 75м, в третьем гололедном районе для рядовой зоны.

Шаг кронштейнов (направляющих) по горизонтали – 600мм;

Шаг кронштейнов по вертикали – 900мм;

Длина направляющей – 3000мм;

Расстояние от основания до места соединения флажков с удлинителями, при максимальном относе плит облицовки – 136 мм;

Исходные данные:

Соединение производится на шлицах одной парой заклепок Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровым расстоянием 30мм.

Нагрузки, действующие в соединении:

•
$$P = \frac{2}{3} \times (q_{z1} + i_{z1}) \times L = \frac{2}{3} \times (211, 7 + 76, 0) \times 3, 0 = 575, 4H$$

• $M_p = P \times e = 575, 4 \times 0, 136 = 78, 3$ Hм е – плечо реакции (от стены до соединения);

Растягивающим усилием, действующим на шлицевое соединение, пренебрегаем.

Расчет производим для наиболее нагруженного крайнего слоя соединения условной высотой 3мм.

Условие прочности на срез:

$$\boldsymbol{\tau}_{cp} = \frac{Q}{A_{cp}} \leq R_{s}$$

Критическая сила в рассматриваемом слое:

•
$$Q_{\kappa} = R_s \times A_{cp} = 75 \times 30, 0 = 2250, 0H$$

Где:

$$A_{cp} = l \times e \times n = 3 \times 2, 0 \times 5 = 30, 0$$
 мм² - площадь среза;

l - условная высота слоя;

e - ширина среза одного зуба;

n - количество зубьев в зацеплении;

Критический момент:

•
$$M_{\kappa} = Q_{\kappa} \times b_{\kappa p} = 2250, 0 \times 0, 047 = 105, 8H_{M}$$

Удовлетворительные условия работы соединения выполняются при соблюдении равенства:

$$M_{\nu} \ge M_{\rm p}$$
; 105,8 \triangleright 78,3 (HM);

Условие прочности соединения обеспечиваются.

5.3 Расчет удлинителей флажков

Расчет производится для прямоугольного в плане здания высотой 75м, расположенного в пятом ветровом районе для зоны №2.

Флажки высотой 120мм, закреплены на направляющей в центральных опорах 2 и 3; крепление к направляющей производится двумя парами заклепок Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровыми расстояниями: 100мм и 60мм.

Расчет производится для ослабленного отверстиями, в месте соединения с направляющей, сечения.

Внутренние силовые факторы в сечении:

- N = 3106,0H
- $M_{\Sigma} = 344,3H_{M}$

Геометрические характеристики опасного сечения:

- B = 7,0 MM;
- h = 120,0 MM;
- $A = 384.0 \text{ MM}^2$:
- $Wx = 6875,2 \text{ MM}^3$;

Расчет сечения по нормальным напряжениям, возникающим от действия изгибающего момента и продольного усилия, производится по формуле 50 (2):

$$\bullet \qquad \left(\frac{N}{A_n} + \frac{M}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

N - продольное усилие на полку;

 A_{n} - площадь поперечного сечения полки кронштейна;

M - изгибающий момент от действия горизонтальной силы;

 $W_{,,}$ - момент сопротивления сечения;

 $\gamma_{\scriptscriptstyle n}$ - коэффициент надежности по назначению;

 γ_{a} - коэффициент условий работы;

•
$$\left(\frac{3106,0}{384,0} + \frac{344,3 \times 10^3}{6875,0}\right) \times 0,95 = 55,2M\Pi a < 120 \times 1,0 = 120M\Pi a$$

Прочность ослабленного сечения по нормальным напряжениям обеспечивается.

5.4 Расчет флажков

Расчет производится для прямоугольного в плане здания высотой 75м, в третьем гололедном районе для рядовой зоны.

Расстояние от основания до места соединения флажков с удлинителями, при максимальном относе плит облицовки – 136 мм;

Внутренние силовые факторы в сечении:

•
$$M_p = P \times e = 575, 4 \times 0, 136 = 78, 3H$$
м е – плечо реакции (от стены до соединения);

Растягивающим усилием, действующим на флажок, пренебрегаем.

Геометрические характеристики опасного, ослабленного отверстиями сечения:

- B = 3.0 MM;
- h = 50,0 MM;
- A = 150,0 MM^2 ;
- $Wx = MM^3$;

Расчет сечения по нормальным напряжениям, возникающим от действия изгибающего момента, производится по формуле:

$$\left(\frac{M}{W_n}\right) \times \gamma_n \le R_y \times \gamma_c$$

M - изгибающий момент от действия горизонтальной силы;

 $W_{\scriptscriptstyle n}$ - момент сопротивления сечения;

 $\gamma_{\scriptscriptstyle n}$ - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{78,3\times10^3}{921,7}\right)\times0,95=80,7M\Pi a < 120\times1,0=120M\Pi a$$

Прочность ослабленного сечения по нормальным напряжениям обеспечивается.

5.5 Расчет опорного кронштейна в качестве несущего

Расчет производится для прямоугольного в плане здания высотой 75м, расположенного в пятом ветровом районе для зоны №2.

Усилия, действующие на кронштейн (см. п.4.2.4):

• N = 3106,0H

Усилие, передаваемое флажком на каждое из двух мест крепления в кронштейне:

•
$$N_{y1} = \frac{N}{2} = \frac{3106,0}{2} = 1553,0H$$

•
$$P = \frac{2}{3} \times q_{z1} \times L = \frac{2}{3} \times 211,7 \times 3,0 = 423,4H$$

•
$$M_p = P \times e = 423, 4 \times 0,041 = 17,4H_M$$

е - плечо реакции (от стены до соединения);

Проверяем сечение «2-2», проходящее через центр окружности кронштейна и линию пересечения плоскости вкладыша с внутренней поверхностью кронштейна, с учетом максимальной неровности стены в 10° (Рис.6).

Геометрические характеристики сечения «2-2»:

- B = 40,0 MM;
- h = 4,0 MM;
- $A = 160 \text{ mm}^2$;
- $Wx = 106,7 \text{ MM}^3$;

Изгибающий момент M_P , действующий в месте соединения опорного кронштейна с флажком, раскладывается на пару сил:

•
$$N_{y2} = \frac{M_P}{z} = \frac{17.4}{0.046} = 378.3H$$

Где z - плечо действия сил.

Наибольшая растягивающая сила на полку кронштейна:

•
$$N_{v} = N_{v1} + N_{v2} = 1553, 0 + 378, 3 = 1931, 3H$$

Изгибающий момент в сечении:

•
$$M = N_v \times l_2 = 1931, 3 \times 5, 8 = 11201, 3H_{MM}$$

Где l_2 - плечо действия силы.

Расчет сечения «2-2» по нормальным напряжениям, возникающим от действия изгибающего момента и продольного усилия, производится по формуле 50 (2):

$$\bullet \qquad \left(\frac{N_{y}}{A_{n}} + \frac{M}{W_{n}}\right) \times \gamma_{n} \leq R_{y} \times \gamma_{c}$$

 $N_{_{\scriptscriptstyle V}}$ - продольное усилие на полку;

 $A_{\scriptscriptstyle n}$ - площадь поперечного сечения полки кронштейна;

M - изгибающий момент от действия горизонтальной силы;

 $W_{,,}$ - момент сопротивления сечения;

 $\gamma_{\scriptscriptstyle n}$ - коэффициент надежности по назначению;

 γ_c - коэффициент условий работы;

•
$$\left(\frac{1553,0}{160,0} + \frac{11201,3}{106,7}\right) \times 0,95 = 109,0 M\Pi a < 120 \times 1,0 = 120 M\Pi a$$

Прочность сечения «2-2» по нормальным напряжениям обеспечивается.

6. ВЫВОДЫ

- 6.1 Схема крепления направляющей к основанию №1 обеспечивает прочность всех элементов несущей конструкции и соединений для всех зон фасада прямоугольного в плане здания высотой 75м, расположенного в первом ветровом и втором гололедном районах, тип местности «В» (г. Москва).
 - Соединение удлинителей несущего кронштейна высотой 120мм с направляющей должно производиться двумя заклепками Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровым расстоянием 90мм.
 - Соединение удлинителей флажков высотой 50мм с направляющей должно производиться одной заклепкой Ø6,4 из коррозионностойкой стали (A2/A2).
- 6.2 Использование схемы №1 для крепления направляющих к стенам зданий, расположенных в других ветровых районах, должно подтверждаться расчетом.
- 6.3 Схема крепления направляющей к основанию №2 обеспечивает прочность всех элементов несущей конструкции и соединений для всех зон фасада прямоугольного в плане здания высотой 75м, расположенного до пятого ветрового и третьего гололедного районов включительно, тип местности «В». Соединение удлинителей несущего кронштейна высотой 120мм с направляющей должно производиться двумя заклепками Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровым расстоянием 90мм.
 - Соединение удлинителей флажков высотой 50мм с направляющей должно производиться одной заклепкой Ø6,4 из коррозионностойкой стали (A2/A2).
- 6.4 Схема крепления направляющей к основанию №3 может применяться при заполнении стеновых проемов материалами с низкой прочностью и обеспечивает прочность всех элементов несущей конструкции и соединений для всех зон фасада прямоугольного в плане здания высотой 75м, расположенного в первом ветровом и втором гололедном районах, тип местности «В» (г. Москва).
 Соединение удлинителей несущего кронштейна высотой 120мм с направляющей в рядовой зоне фасада должно производиться двумя заклепками Ø6,4 из коррозионностойкой стали (А2/А2) с межцентровым расстоянием 90мм.
 Соединение удлинителей несущего кронштейна высотой 120мм с направляющей в краевой зоне фасада должно производиться двумя парами заклепок Ø6,4 из коррозионностойкой стали (А2/А2) с межцентровыми расстояниями 100мм и 60мм.
 Соединение удлинителей флажков высотой 50мм с направляющей должно производиться одной заклепкой Ø6,4 из коррозионностойкой стали (А2/А2).
- 6.5 Для применения схемы №3 в других ветровых районах требуется увеличение межцентровых расстояний и, как следствие высоты удлинителей, что должно подтверждаться расчетом.
- 6.6 Схема крепления направляющей к основанию №4 может применяться для крепления системы на кладки из штучных каменных материалов и обеспечивает прочность всех элементов несущей конструкции и соединений для всех зон фасада прямоугольного в плане здания высотой 75м, расположенного до пятого ветрового и третьего гололедного районов включительно, тип местности «В». Соединение удлинителей флажков высотой 120мм с направляющей должно производиться двумя парами заклепок Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровыми расстояниями 100мм и 60мм. Соединение удлинителей флажков высотой 50мм с направляющей должно производиться одной заклепкой Ø6,4 из коррозионностойкой стали (A2/A2).
- 6.7 При использовании схемы крепления направляющей к основанию №4 для зданий, расположенных в первом ветровом районе допускается уменьшить высоту флажков до 100мм и крепление их к направляющей производить одной парой заклепок Ø6,4 из коррозионностойкой стали (A2/A2) с межцентровым расстоянием 80мм.

ПЕРЕЧЕНЬ НОРМАТИВНЫХ ДОКУМЕНТОВ

1. CHиП 2.01.07- 85* Нагрузки и воздействия.

2. CHиП 11-23 – 81* Стальные конструкции.

3. СНиП 2.03.06-85 Алюминиевые конструкции.

- 4. МДС 20-1.2006 Временные рекомендации по назначению нагрузок и воздействий, действующих на многофункциональные высотные здания и комплексы в Москве.
- 5. Госстрой России. ФЦС. ЦНИИСК им. В.А. Кучеренко. Фасадные теплоизоляционные системы с воздушным зазором. Рекомендации по составу и содержанию документов и материалов, представляемых для технической оценки пригодности продукции. Москва, 2004 г.
- 6. ТР 161-05.2005 Технические рекомендации по проектированию, монтажу и эксплуатации навесных фасадных систем.